
CS193p

Spring 2016

Stanford CS193p
Developing Applications for iOS

Spring 2016

CS193p

Spring 2016

Today
More Swift & the Foundation Framework

What are Optionals really?
Access Control
Tuples
Range<T>
Data Structures in Swift
Methods
Properties
Array<T>, Dictionary<K,V>, String, et. al.
Initialization
AnyObject, introspection and casting (is and as)
Property List
NSUserDefaults
AnyObject in CalculatorBrain
assert

CS193p

Spring 2016

Optional
An Optional is just an enum

In other words …
enum Optional<T> { // the <T> is a generic like as in Array<T>

case None
case Some(T)

}
let x: String? = nil
… is …
let x = Optional<String>.None

let x: String? = “hello”
… is …
let x = Optional<String>.Some(“hello”)

var y = x!
… is …
switch x {

case Some(let value): y = value
case None: // raise an exception

}

CS193p

Spring 2016

Optional
An Optional is just an enum

let x: String? = ...
if let y = x {

// do something with y
}

… is …
switch x {

case .Some(let y):
// do something with y

case .None:
break

}

CS193p

Spring 2016

Optional
Optionals can be “chained”
For example, hashValue is a var in String which is an Int
What if we wanted to get the hashValue from something which was an Optional String?
And what if that Optional String was, itself, contained in an Optional UILabel display?

var display: UILabel? // imagine this is an @IBOutlet without the implicit unwrap !
if let label = display {

if let text = label.text {
let x = text.hashValue
...

}
}

… or …

if let x = display?.text?.hashValue { ... }

CS193p

Spring 2016

Optional
There is also an Optional “defaulting” operator ??
What if we want to put a String into a UILabel, but if it’s nil, put “ ” (space) in the UILabel?

let s: String? = ... // might be nil
if s != nil {

display.text = s
} else {

display.text = “ “
}

… can be expressed much more simply this way …

display.text = s ?? “ “

CS193p

Spring 2016

Tuples
What is a tuple?

It is nothing more than a grouping of values.
You can use it anywhere you can use a type.

let x: (String, Int, Double) = (“hello”, 5, 0.85)
let (word, number, value) = x // tuple elements named when accessing the tuple
print(word) // prints hello
print(number) // prints 5
print(value) // prints 0.85
… or the tuple elements can be named when the tuple is declared …

let x: (w: String, i: Int, v: Double) = (“hello”, 5, 0.85)
print(x.w) // prints hello
print(x.i) // prints 5
print(x.v) // prints 0.85
let (wrd, num, val) = x // this is also legal (renames the tuple’s elements on access)

CS193p

Spring 2016

Tuples
Returning multiple values from a function

func getSize() -> (weight: Double, height: Double) { return (250, 80) }

let x = getSize()
print(“weight is \(x.weight)”) // weight is 250
… or …
print(“height is \(getSize().height)”) // height is 80

CS193p

Spring 2016

Classes, Structures and Enumerations
These are the 3 fundamental building blocks of data structures in Swift

Similarities
Declaration syntax …

class CalculatorBrain {

}
struct Vertex {

}
enum Op {

}

Data Structures in Swift

CS193p

Spring 2016

Classes, Structures and Enumerations
These are the 3 fundamental building blocks of data structures in Swift

Similarities
Declaration syntax …
Properties and Functions …

func doit(argument: Type) -> ReturnValue {

}

var storedProperty = <initial value> (not enum)

var computedProperty: Type {
 get {}
 set {}
}

Data Structures in Swift

CS193p

Spring 2016

Classes, Structures and Enumerations
These are the 3 fundamental building blocks of data structures in Swift

Similarities
Declaration syntax …
Properties and Functions …
Initializers (again, not enum) …

init(argument1: Type, argument2: Type, …) {

}

Data Structures in Swift

CS193p

Spring 2016

Classes, Structures and Enumerations
These are the 3 fundamental building blocks of data structures in Swift

Similarities
Declaration syntax …
Properties and Functions …
Initializers (again, not enum) …

Differences
Inheritance (class only)
Value type (struct, enum) vs. Reference type (class)

Data Structures in Swift

CS193p

Spring 2016

Value (struct and enum)
Copied when passed as an argument to a function
Copied when assigned to a different variable
Immutable if assigned to a variable with let
Remember that function parameters are constants
You must note any func that can mutate a struct/enum with the keyword mutating

Reference (class)
Stored in the heap and reference counted (automatically)
Constant pointers to a class (let) still can mutate by calling methods and changing properties
When passed as an argument, does not make a copy (just passing a pointer to same instance)

Choosing which to use?
Usually you will choose class over struct. struct tends to be more for fundamental types.
Use of enum is situational (any time you have a type of data with discrete values).

Value vs. Reference

CS193p

Spring 2016

Parameters Names
All parameters to all functions have an internal name and an external name

Methods

func foo(externalFirst first: Int, externalSecond second: Double) {
 var sum = 0.0
 for _ in 0..<first { sum += second }
}

func bar() {
 let result = foo(externalFirst: 123, externalSecond: 5.5)
}

CS193p

Spring 2016

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method

Methods

func foo(externalFirst first: Int, externalSecond second: Double) {
 var sum = 0.0
 for _ in 0..<first { sum += second }
}

func bar() {
 let result = foo(externalFirst: 123, externalSecond: 5.5)
}

CS193p

Spring 2016

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers use when they call the method

Methods

func foo(externalFirst first: Int, externalSecond second: Double) {
 var sum = 0.0
 for _ in 0..<first { sum += second }
}

func bar() {
 let result = foo(externalFirst: 123, externalSecond: 5.5)
}

CS193p

Spring 2016

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers use when they call the method
You can put _ if you don’t want callers to use an external name at all for a given parameter

Methods

func foo(_ first: Int, externalSecond second: Double) {
 var sum = 0.0
 for _ in 0..<first { sum += second }
}

func bar() {
 let result = foo(123, externalSecond: 5.5)
}

CS193p

Spring 2016

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers use when they call the method
You can put _ if you don’t want callers to use an external name at all for a given parameter
This is the default for the first parameter (except in initializers!)

Methods

func foo(first: Int, externalSecond second: Double) {
 var sum = 0.0
 for _ in 0..<first { sum += second }
}

func bar() {
 let result = foo(123, externalSecond: 5.5)
}

CS193p

Spring 2016

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers use when they call the method
You can put _ if you don’t want callers to use an external name at all for a given parameter
This is the default for the first parameter (except in initializers!)
For other (not the first) parameters, the internal name is, by default, the external name

Methods

func foo(first: Int, second: Double) {
 var sum = 0.0
 for _ in 0..<first { sum += second }
}

func bar() {
 let result = foo(123, second: 5.5)
}

CS193p

Spring 2016

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers use when they call the method
You can put _ if you don’t want callers to use an external name at all for a given parameter
This is the default for the first parameter (except in initializers!)
For other (not the first) parameters, the internal name is, by default, the external name
Any parameter’s external name can be changed (even forcing the first parameter to have one)

Methods

func foo(forcedFirst first: Int, _ second: Double) {
 var sum = 0.0
 for _ in 0..<first { sum += second }
}

func bar() {
 let result = foo(forcedFirst: 123, 5.5)
}

CS193p

Spring 2016

Parameters Names
All parameters to all functions have an internal name and an external name
The internal name is the name of the local variable you use inside the method
The external name is what callers use when they call the method
You can put _ if you don’t want callers to use an external name at all for a given parameter
This is the default for the first parameter (except in initializers!)
For other (not the first) parameters, the internal name is, by default, the external name
Any parameter’s external name can be changed (even forcing the first parameter to have one)
It is generally “anti-Swift” to force a first parameter name or suppress other parameters names

Methods

func foo(first: Int, second: Double) {
 var sum = 0.0
 for _ in 0..<first { sum += second }
}

func bar() {
 let result = foo(123, second: 5.5)
}

CS193p

Spring 2016

Obviously you can override methods/properties in your superclass
Precede your func or var with the keyword override
A method can be marked final which will prevent subclasses from being able to override
Classes can also be marked final

Both types and instances can have methods/properties
For this example, lets consider using the struct Double (yes, Double is a struct)
var d: Double = …
if d.isSignMinus {

d = Double.abs(d)
}

isSignMinus is an instance property of a Double (you send it to a particular Double)
abs is a type method of Double (you send it to the type itself, not to a particular Double)
You declare a type method or property with a static prefix …
static func abs(d: Double) -> Double

Methods

CS193p

Spring 2016

Property Observers
You can observe changes to any property with willSet and didSet
Will also be invoked if you mutate a struct (e.g. add something to a dictionary)
One very common thing to do in an observer in a Controller is to update the user-interface

var someStoredProperty: Int = 42 {
willSet { newValue is the new value }
didSet { oldValue is the old value }

}

override var inheritedProperty {
willSet { newValue is the new value }
didSet { oldValue is the old value }

}

Properties

var operations: Dictionary<String, Operation> = [...] {
willSet { will be executed if an operation is added/removed }
didSet { will be executed if an operation is added/removed }

}

CS193p

Spring 2016

Lazy Initialization
A lazy property does not get initialized until someone accesses it
You can allocate an object, execute a closure, or call a method if you want

This still satisfies the “you must initialize all of your properties” rule
Unfortunately, things initialized this way can’t be constants (i.e., var ok, let not okay)
This can be used to get around some initialization dependency conundrums

lazy var brain = CalculatorBrain() // nice if CalculatorBrain used lots of resources

lazy var someProperty: Type = {
// construct the value of someProperty here
return <the constructed value>

}()

lazy var myProperty = self.initializeMyProperty()

Properties

CS193p

Spring 2016

Array
Array
var a = Array<String>()
… is the same as …
var a = [String]()

let animals = [“Giraffe”, “Cow”, “Doggie”, “Bird”]
animals.append(“Ostrich”) // won’t compile, animals is immutable (because of let)
let animal = animals[5] // crash (array index out of bounds)

// enumerating an Array
for animal in animals {

println(“\(animal)”)
}

CS193p

Spring 2016

Array
Interesting Array<T> methods

This one creates a new array with any “undesirables” filtered out
The function passed as the argument returns false if an element is undesirable
filter(includeElement: (T) -> Bool) -> [T]
let bigNumbers = [2,47,118,5,9].filter({ $0 > 20 }) // bigNumbers = [47, 118]

Create a new array by transforming each element to something different
The thing it is transformed to can be of a different type than what is in the Array
map(transform: (T) -> U) -> [U]
let stringified: [String] = [1,2,3].map { String($0) }

Reduce an entire array to a single value
reduce(initial: U, combine: (U, T) -> U) -> U
let sum: Int = [1,2,3].reduce(0) { $0 + $1 } // adds up the numbers in the Array

CS193p

Spring 2016

Dictionary
Dictionary
var pac10teamRankings = Dictionary<String, Int>()
… is the same as …
var pac10teamRankings = [String:Int]()

pac10teamRankings = [”Stanford”:1, ”Cal”:10]
let ranking = pac10teamRankings[“Ohio State”] // ranking is an Int? (would be nil)

// use a tuple with for-in to enumerate a Dictionary
for (key, value) in pac10teamRankings {

print(“\(key) = \(value)”)
}

CS193p

Spring 2016

String
The characters in a String

The simplest way to deal with the characters in a string is via this property …

var characters: String.CharacterView { get }

You can think of this as an [Character] (it’s not actually that, but it works like that).
A Character is a “human understandable idea of a character”.
That will make it easier to index into the characters.

Indexing into a String itself is quite a bit more complicated.
Your reading assignment goes over it all.

CS193p

Spring 2016

String
Other String Methods

String is automatically “bridged” to the old Objective-C class NSString
So there are some methods that you can invoke on String that are not in String’s doc
You can find them in the documentation for NSString instead.
Here are some other interesting String methods …
startIndex -> String.Index
endIndex -> String.Index
hasPrefix(String) -> Bool
hasSuffix(String) -> Bool
capitalizedString -> String
lowercaseString -> String
uppercaseString -> String
componentsSeparatedByString(String) -> [String] // “1,2,3”.csbs(“,”) = [“1”,”2”,”3”]

CS193p

Spring 2016

Other Classes
NSObject

Base class for all Objective-C classes
Some advanced features will require you to subclass from NSObject (and it can’t hurt to do so)

NSNumber
Generic number-holding class
let n = NSNumber(35.5)
let intversion: Int = n.intValue // also doubleValue, boolValue, etc.

NSDate
Used to find out the date and time right now or to store past or future dates.
See also NSCalendar, NSDateFormatter, NSDateComponents
If you are displaying a date in your UI, there are localization ramifications, so check these out!

NSData
A “bag o’ bits”. Used to save/restore/transmit raw data throughout the iOS SDK.

CS193p

Spring 2016

When is an init method needed?
init methods are not so common because properties can have their defaults set using =
Or properties might be Optionals, in which case they start out nil
You can also initialize a property by executing a closure
Or use lazy instantiation
So you only need init when a value can’t be set in any of these ways

You also get some “free” init methods
If all properties in a base class (no superclass) have defaults, you get init() for free
If a struct has no initializers, it will get a default one with all properties as arguments

Initialization

struct MyStruct {
var x: Int
var y: String

}

let foo = init(x: 5, y: “hello”) // free init() method!

CS193p

Spring 2016

What can you do inside an init?
You can set any property’s value, even those with default values
Constant properties (i.e. properties declared with let) can be set
You can call other init methods in your own class using self.init(<args>)
In a class, you can of course also call super.init(<args>)
But there are some rules for calling inits from inits in a class …

Initialization

CS193p

Spring 2016

What are you required to do inside init?
By the time any init is done, all properties must have values (optionals can have the value nil)
There are two types of inits in a class: convenience and designated (i.e. not convenience)
A designated init must (and can only) call a designated init that is in its immediate superclass
You must initialize all properties introduced by your class before calling a superclass’s init
You must call a superclass’s init before you assign a value to an inherited property
A convenience init must (and can only) call an init in its own class
A convenience init must call that init before it can set any property values
The calling of other inits must be complete before you can access properties or invoke methods
Whew!

Initialization

CS193p

Spring 2016

Inheriting init
If you do not implement any designated inits, you’ll inherit all of your superclass’s designateds
If you override all of your superclass’s designated inits, you’ll inherit all its convenience inits
If you implement no inits, you’ll inherit all of your superclass’s inits
Any init inherited by these rules qualifies to satisfy any of the rules on the previous slide

Required init
A class can mark one or more of its init methods as required
Any subclass must implement said init methods (though they can be inherited per above rules)

Initialization

CS193p

Spring 2016

Failable init
If an init is declared with a ? (or !) after the word init, it returns an Optional
init?(arg1: Type1, …) {

// might return nil in here
}
These are rare.

let image = UIImage(named: “foo”) // image is an Optional UIImage (i.e. UIImage?)
Usually we would use if-let for these cases …
if let image = UIImage(named: “foo”) {

// image was successfully created
} else {

// couldn’t create the image
}

Initialization

CS193p

Spring 2016

Creating Objects
Usually you create an object by calling it’s initializer via the type name …
let x = CalculatorBrain()
let y = ComplicatedObject(arg1: 42, arg2: “hello”, …)
let z = [String]()

Obviously sometimes other objects will create objects for you.

Initialization

CS193p

Spring 2016

AnyObject is a special type (actually it’s a protocol)
Used to be commonly used for compatibility with old Objective-C APIs
But not so much anymore in iOS9 since those old Objective-C APIs have been updated
A variable of type AnyObject can point to any class, but you don’t know which
A variable of type AnyObject cannot hold a struct or an enum
There is another type, Any, which can hold anything (very, very rarely used)

Where will you see it?
Sometimes (rarely) it will be an argument to a function that can actually take any class …
func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject)
func touchDigit(sender: AnyObject)
Or when you want to return an object and you don’t want the caller to know its class …
var cookie: AnyObject

AnyObject

CS193p

Spring 2016

How do we use a variable of type AnyObject?
We can’t usually use it directly (since we don’t know what class it is)
Instead, we must convert it to another, known class (or protocol)

This conversion might not be possible, so the conversion generates an Optional
Conversion is done with the as? keyword in Swift (or as! to force unwrap the Optional)
You can also check to see if something can be converted with the is keyword (true/false)

We usually use as? it with if let …
let ao: AnyObject = …
if let foo = ao as? SomeClass {

// we can use foo and know that it is of type SomeClass in here
}

AnyObject

CS193p

Spring 2016

Example …
Remember when we wired up our Actions in our storyboard?
The default in the dialog that popped up was AnyObject. We changed it to UIButton.
But what if we hadn’t changed it to UIButton because UISliders could also send it?
(Let’s imagine the slider slides through all the numbers 0 through 9 … silly.)
How would we have implemented touchDigit?
@IBAction func touchDigit(sender: AnyObject) {

if let sendingButton = sender as? UIButton {
let digit = sendingButton.currentTitle!
…

} else if let sendingSlider = sender as? UISlider {
let digit = String(Int(sendingSlider.value))
…

}
}

AnyObject

CS193p

Spring 2016

Property List
Another use of AnyObject: Property List

Property List is really just the definition of a term
It means an AnyObject which is known to be a collection of objects which are ONLY one of …

String, Array, Dictionary, a number (Double, Int, etc.), NSData, NSDate
e.g. a Dictionary whose keys were String and values were Array of NSDate is one

But wait! String, Array, Dictionary, Double … these are all structs, not classes!
Yes, but they are automatically “bridged” to Objective-C counterparts which are classes.
Objective-C is almost invisible now in the Swift API to iOS, so we’ll skip talking about bridging.
But we will talk about Property List and even give an example of it.

Property Lists are used to pass generic data structures around “blindly”.
The semantics of the contents of a Property List are known only to its creator.
Everyone else just passes it around as AnyObject and doesn’t know what’s inside.
Let’s look at an iOS API that does this: NSUserDefaults …

CS193p

Spring 2016

NSUserDefaults
A storage mechanism for Property List data
NSUserDefaults is essentially a very tiny database that stores Propery List data.
It persists between launchings of your application!
Great for things like “settings” and such.
Do not use it for anything big!

It can store/retrieve entire Property Lists by name (keys) …
setObject(AnyObject, forKey: String)
objectForKey(String) -> AnyObject?
arrayForKey(String) -> Array<AnyObject>? // returns nil if you setObject(not-an-array)

It can also store/retrieve little pieces of data …
setDouble(Double, forKey: String)
doubleForKey(String) -> Double

CS193p

Spring 2016

NSUserDefaults
Using NSUserDefaults

Get the defaults reader/writer …
let defaults = NSUserDefaults.standardUserDefaults()

Then read and write …
let plist = defaults.objectForKey(“foo”)
defaults.setObject(plist, forKey: “foo”)

Your changes will be automatically saved.
But you can be sure they are saved at any time by synchronizing …
if !defaults.synchronize() { // failed! but not clear what you can do about it }
(it’s not “free” to synchronize, but it’s not that expensive either)

CS193p

Spring 2016

Property List
Another example of Property List

What if we wanted to export the sequence of events that was input to the CalculatorBrain.
We could consider this the CalculatorBrain’s “program”.

var program: AnyObject

This would be get-able and set-able.
The program will be a Property List containing all the operands/operations done.
Only the CalculatorBrain will be able to interpret the program.
So it’s only good for getting it, holding onto it, then giving it back to the CalculatorBrain later.
In assignment 2, we’ll use this to create a “programmable calculator” with variables.

To give you a head start on your assignment, let’s implement this var in CalculatorBrain …

CS193p

Spring 2016

By the way, casting is not just for AnyObject
You can cast with as (or check with is) any object pointer that makes sense
For example …
let vc: UIViewController = CalculatorViewController()
The type of vc is UIViewController (because we explicitly typed it to be)
And the assignment is legal because a CalculatorViewController is a UIViewController
But we can’t say, for example, vc.displayValue

However, if we cast vc, then we can use it …
if let calcVC = vc as? CalculatorViewController {

let x = calcVC.displayValue // this is okay
}

Or we could force the cast (might crash) by using as! (with no if let) rather than as?

Casting

CS193p

Spring 2016

Assertions
Debugging Aid

Intentionally crash your program if some condition is not true (and give a message)
assert(() -> Bool, “message”)
The function argument is an “autoclosure” however, so you don’t need the { }

e.g. assert(validation() != nil, “the validation function returned nil”)
Will crash if validation() returns nil (because we are asserting that validation() does not)
The validation() != nil part could be any code you want

When building for release (to the AppStore or whatever), asserts are ignored completely

